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Abstract. The derivation of the low temperature (high field) series expansion for the free 
energy of the spin one-half king model on the three-dimensional coordination-three 
hydrogen peroxide lattice is discussed. Complete high field polynomials to order 23 are 
presented. 

1. Introduction 

This paper is concerned with the derivation of low temperature (high field) series ex- 
pansions for the free energy of the spin one-half Ising model on a particular three- 
dimensional lattice, the hydrogen peroxide lattice. The general theory of low temperature 
series expansions for the Ising model has been presented in a recent series (Sykes et  al 
1965, to be referred to as I, Sykes et a1 1973a, to be referred to as 11). The third paper 
of the series (Sykes et al1973b, to be referred to as 111) deals with the high field expansion 
of the Ising model for two-dimensional lattices and in particular for the honeycomb 
lattice. The hydrogen peroxide lattice is the three-dimensional analogue of the honey- 
comb lattice, and much of the theory special to the honeycomb lattice in two dimensions 
applies equally to the hydrogen peroxide lattice in three dimensions. 

Although there may not be any real magnetic insulator for which the magnetic 
ions lie on a hydrogen peroxide lattice, this lattice is of great theoretical interest. On 
the one hand, as is well known, the critical exponents are independent of lattice because 
in the critical region the range of correlations is much greater than the lattice spacing. 
On the other hand the present techniques for low temperature expansions are especially 
powerful on the hydrogen peroxide lattice. Finally it turns out for the hydrogen per- 
oxide lattice (Betts and Chan 1974) as for the diamond lattice that the coefficients 
of the series for the thermodynamic properties along the coexistence curve are all of 
one sign. 

As in previous papers in this series full details of the calculations will not be presented 
for the reason that very few workers will wish to repeat these or similar low temperature 
series calculations while the great majority of readers will be interested only in the final 
results. In 9 2 we describe the rather unfamiliar hydrogen peroxide lattice and its shadow 
lattice, the hypertriangular lattice. In 0 3 we outline the steps in the calculation needed 
to obtain the basic low temperature series. Section 4 contains a description of some check- 
ing procedures used to assure the correctness of the series coefficients. Section 5 compares 
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the series results for the three-dimensional hydrogen peroxide lattice with the infinite 
dimensional Bethe lattice. Finally the basic data, the partial generating functions F ,  to 
F ,  and the high field polynomials Ll(z) to L23(z )  for the hydrogen peroxide lattice are 
presented in the appendix. 

The series for such thermodynamic properties as the specific heat, magnetization 
and susceptibility along the coexistence curve and along the critical isotherm can be 
derived readily from the L,(z). Such series and their analysis are presented in a companion 
paper (Betts and Chan 1974). 

2. Hydrogen peroxide and hypertriangular lattices 

Investigations of the Ising model and other models of cooperative phenomena in lattice 
statistics are usually carried out on regular lattices. A regular lattice is one in which all 
sites or vertices are equivalent and all bonds or edges are equivalent under a combination 
of translation and improper rotation. By restricting investigations to regular lattices 
the calculations are simplified without normally losing any of the interesting physics. 

In two dimensions the only regular lattices are the honeycomb, square or quadratic, 
kagome and triangular lattices of coordination numbers, q = 3,4 ,4  and 6 respectively. 
In three dimensions there are considerably more regular lattices all of which are necessarily 
of cubic symmetry. The three-dimensional lattices most often used in lattice statistical 
investigations are the diamond, simple cubic, body-centred cubic and face-centred cubic 
lattices with q = 4, 6, 8 and 12 respectively. 

In the present study we employ the hydrogen peroxide lattice discovered by Heesch 
and Laves (1933) and described by Wells (1954) as the only regular lattice with the theo- 
retical minimum coordination number, q = 3. This lattice was introduced into lattice 
statistics by Leu et a1 (1969) who derived high temperature expansions for the Ising 
model partition function and susceptibility on the hydrogen peroxide lattice. 

The hydrogen peroxide lattice consists of a BCC bravais lattice with four atoms per 
unit cell. The axes may be chosen so that the vertices of the hydrogen peroxide lattice 
are located at the points ( I ,  m, n)a, ( I + * ,  m+a, n)a, (l+i, m+a, n+$)a, ( l + $ ,  m, n+$)a, 
( l ,m+$,n+&, (l+$,m++,n+$)a, ( l++,m++,n+f)a and (l+$,m+$,n++)a. Each 
vertex is surrounded by three nearest-neighbour vertices lying in a common plane and 
making 120" angles at the central vertex. In this respect the hydrogen peroxide lattice 
resembles the honeycomb lattice. It differs from the honeycomb lattice in that the plane 
of neighbours of one vertex is rotated by 60" with respect to the plane of neighbours of 
the neighbouring vertex. The smallest polygon which can be embedded in the hydrogen 
peroxide lattice has 10 edges and the second smallest has 14 edges. 

In nature the only known examples of crystalline substances conforming to the 
hydrogen peroxide lattice are H 2 0 2  (oxygen atoms only) and Hg3S2C13 (Wells 1972). 
However as demonstrated in the succeeding sections the hydrogen peroxide lattice is 
of great theoretical interest in lattice statistics. 

The hypertriangular lattice is derived from the hydrogen peroxide lattice as one of 
two equivalent sub-lattices of second-neighbour vertices. The hypertriangular lattice 
is to  the hydrogen peroxide lattice as the triangular lattice is to the honeycomb lattice. 
The relationship is illustrated schematically in figure 1. This figure also illustrates 
that the hypertriangular lattice is the shadow lattice (Sykes et a1 1965) to the hydrogen 
peroxide lattice. However these two models can be much better appreciated from a 
three-dimensional model. 
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Figure 1. Schematic relation between the hydrogen peroxide lattice, open circles and full 
lines, and the hypertriangular lattice, full circles and broken lines. 

The infinite dimensional (d = CO)  analogue of the honeycomb (d  = 2) and hydrogen 
peroxide (d = 3) lattices is the q = 3 Bethe lattice, which contains no closed circuits. 
The q = 3 Bethe lattice consists of two equivalent sub-lattices of q = 6. The sub-lattice 
is a pure Husimi lattice consisting of three articulated triangles meeting at each vertex 
and is the d = CO analogue of the triangular ( d  = 2) and hypertriangular lattices (d  = 3). 

3. Derivation of the complete low temperature codes F, for s < 12 

The general theory of low temperature expansions for the spin one-half Ising model has 
been developed by Sykes et al(1965), and Sykes et a1 (1973a). Application to the high 
field expansion in two dimensions and in particular to the honeycombtriangular 
pair of lattices has been expounded by Sykes et a1 (1973b). Most of the formalism for 
the honeycombtriangular lattice (d  = 2) pair is equally applicable to the hydrogen 
peroxide-hypertriangular pair of lattices (d = 3) or the q = 3 Bethe and q = 6 Husimi 
lattices (d = CO). Indeed in some ways the three-dimensional case is simpler because all 
triangles are of significant parity. 

Using the theory as developed in I, I1 and I11 it is clear that all complete codes or 
partial generating functions on the hypertriangular lattice, F, for n c 5 ,  can be completely 
determined algebraically because of the smallest polygon on the hydrogen peroxide 
lattice being of ten sides. Similarly all complete codes on the Husimi lattice can be 
determined algebraically thus providing by an alternative method a complete solution 
of the Ising model on the Bethe lattice. 

To complete F, it is necessary to compute directly only the coefficient of the code 
(10,5,5,0). This coefficient is the strong or low temperature lattice constant of the 
pentagon on the hypertriangular lattice and is readily found by inspection to be 3. F,  is 
then completed algebraically. F6 and F, can also be readily completed by hand using 
theory of I, I1 and 111. However, the graphical information required to compute Fs and 
beyond becomes rather extensive and further developments are required. For example 
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the coefficient of the code (16,8,8,0) in F ,  requires among others the lattice constant 
[X 0"' ] = 1608 and F, ,  requires [X 0"" 3 = 445146. 

To obtain the complete codes Fs for s < 12, as we have done, we must : 
(i) determine all the codes (A, a, j, y) whose coefficients must be supplied directly 

(ii) List all the graphs corresponding to each code in (i). 
(iii) Compute the lattice constant of each graph in (ii). 
(iv) Solve the appropriate sets of linear equations to determine the coefficients of 

the remaining codes in F,. We illustrate these steps for order s = 8 (eight over turned 
spins) where 3s = a+2p+3y. 

Finally all needed lattice constants have been obtained by electronic computer using 
special programs written for the purpose by one of us (CJE). 

The coefficients of the codes in Fs which can be obtained algebraically require at 
worst, for F ,  ,, the simultaneous solution of eleven simultaneous equations in eleven 
unknowns in which the set of coefficients is triangular. Although it was easy to solve 
these equations on a desk calculator their solution was also computerized. 

The resulting complete codes F ,  to F , ,  are listed in the appendix. All coefficients 
are exact. The complete codes F ,  to F, ,  derived for the hypertriangular lattice lead 
rather directly to the high field polynomials L ,  to L 2 3  on the hydrogen peroxide lattice 
where the logarithm of the partition function per site is 

from configurational information rather than determined algebraically. 

In A = Ls(z)ps. 
S 

(3.1) 

These polynomials are also listed in the appendix. 
Table I lists eight spin codes according to rank y ,  (number of triangles) and energy, 

M: + j (power of U ) .  Codes above the broken line are non-graphical, that is, there are 
no graphs corresponding to these codes which are embeddable in the hypertriangular 
lattice. All eight spin codes of rank greater than three are non-graphical. Coefficients 

Table 1. Eighth-order codes for the hydrogen peroxide-hypertriangular lattices. 

(16, 8, 8,O) (18, 14, 2, 2) 
(17, 10, 7,O) (18, 13,4, 1) (19, 16. 1.2) 

1 (17, 11, 5, 1) 

(18, 11, 6,O) (19, 15, 3, 1) (20, l8,0,2) 
(19, 12, 5, 0) (20, 17, 2, 1) 
(20, 13, 4, 0) (21, 19, 1, 1) 
(21, 14, 3,O) (22, 21, 0, 1) 
(22, 15,2, 0) 
(23, 16, 1,O) 
( 2 4 , ~  o,o) 
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of codes below the solid line can be determined algebraically. Thus for s = 8 the coeffi- 
cients of only (15,7,7, l), (1 5,6,9,0) and (16,8,8,0) need be calculated directly, while 
the remaining 24 graphical codes are calculated algebraically by exploiting the symmetry 
between the two sublattices. 

The graphs which contribute to the required codes fall into two classes: (1) basic 
star graphs in which every vertex of every triangular subgraph is also a vertex of one or 
more polygons of higher degree; (2) other star graphs, trees and disconnected graphs. It 
is a straightforward matter to generate a list of class (2) graphs for each code of order s 
starting from a complete list of graphs of ‘parent’ codes of order s- 1. Graphs of class 
(1) are more difficult to obtain. We have obtained them from the list of stars on the hydro- 
gen peroxide lattice as given by Leu et a1 (1969). 

Low temperature lattice constants for all graphs have been obtained by direct in- 
spection of the lattice as far as that is possible. Further lattice constants can be obtained 
from symbolic equations (Domb 1960). 

4. Checking procedures 

All major steps in the derivation of the series as listed in the appendix have been com- 
puterized. In order to check the computer programs all stages of the calculation have 
also been carried out as far as is feasible by hand. 

The coefficients of each group of codes of a given order s = (a + 28 + 3y)/3 and rank 
y forms a set among which there are s - y linear relations when use is made of the sub- 
lattice symmetry and the complete lower codes are assumed known. Hence a complete 
check is afforded by ‘overcounting’, that is by determining the coefficient of one more 
code than necessary in each set. In practice it is easiest to obtain the coefficient of the code 
with largest 8 value. For F8 for example we have overcounted by finding coefficients of 
(15,8,5,2), (16,9,6, 1) and (17, 10,7,0). All codes have been checked in this way with 
the exception of the codes for s = 11, y = 0. 

A further check has been possible through another computer program which counts 
all connected configurations of s spins and sorts them by code. In this way the connected 
parts of the coefficients of all codes have been checked. 

A further independent check is provided by the high-low transformation (Sykes et a1 
1966). The data from the high temperature series for the specific heat and susceptibility 
are used to provide two further constraints on each complete code. By this means we 
have also checked all F, for s < 12 and find agreement. Thus we believe our results for 
all Fs are-correct. 

5. Comparison with Bethe lattice 

The fact that the smallest polygon embeddable in the hydrogen peroxide lattice is of 
ten sides means that L ,  to L9 for the hydrogen peroxide lattice are identical to L ,  to L,  
for the q = 3 Bethe lattice. This raises the question as to what extent higher L, differ 
between the two lattices, or to what extent the three dimensionality of the hydrogen 
peroxide lattice is sensed by the L, for 10 < s < 23. 

We have computed the coefficients [s; r ] ,  in 
s(s- 1)/2 

r = O  
L,(z) = 1 [ s ;  r ] , ~ ‘ 1 ~ - ~ ‘  (5.1) 
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for the q = 3 Bethe lattice for comparison with the same coefficients, [s; rI3 ,  for the 
hydrogen peroxide lattice listed in the appendix. 

The quantity prs = 1 - [s; r ] , / [ s ;  rI3 is a convenient measure of how much the 
coefficients of the hydrogen peroxide lattice differ from the corresponding coefficients 
of the q = 3 Bethe lattice. For s .c 10 of course all prs = 0. For s > 10 the lprsl decrease 
monotonically with r for fixed s and the lprsl increase monotonically with s for fixed r .  
For s = 10, plo, lo  = 1 but p12,10 = -0.003 and for rmax = 30, P , , , ~ ,  = 4 x Thus 
L, ,  does not 'feel' the dimensionality of the lattice very much. For s = 16, p 1 4 , 1 6  = 
p 1 6 , 1 6  = 1 while p 1 8 , 1 6  = -0.3. The Ipr,161 continue to decrease until for r,,, = 48, 

)pr,231 decline slowly through p 3 7 . 2 3  = -0.1 to p 7 0 , 2 3  = -0.01. Thus the higher s 
polynomials are very much three-dimensional and we can usefully analyse the resulting 
series to predict thermodynamic properties of the three-dimensional Ising model on 
the critical isotherm. 

p 4 8 , 1 6  = io+. F o r s  = 23, p 1 7 , 2 3  = P 1 9 , 2 3  = P 2 1 , 2 3  = P 2 3 , 2 3  = ', P 2 5 , 2 3  = -5'1 then 

The coefficients [ r  ; s] can be regrouped to form $,(p) in 

where the present data give the first 17 complete i+hr. Here the deviation from the Bethe 
lattice is more pronounced with p17,23  = p17,21  = p17.19  = p17 ,17  = 1, p17 ,15  = -0.2 
with only p 1 7 , 1 3  and p17,1 being very small. This means that series for thermodynamic 
functions on the coexistence curve will be still more truly three dimensional in their 
later coefficients than along the critical isotherm. 
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Appendix 

Complete codes or partial generating functions F, to order 11 and high field polynomials 
L,(z) to order 23 for the spin half Ising model on the hydrogen peroxide lattice are 
listed here. 

Partial generating functions 

Fl = 1(3,3,0,0) 

F2 = 3(5,4, 1,O)- 3&6,6,0,0) 

F 3  = 1(7,6,0,1)+ 12(7,5,2,0)- 33(8,7, 1,0)+ 2M9,9,0,0) 

F4 = 12(9,7, 1, 1)- 15(10,9,0, 1)+ 56(9,6, 3,0)-256+(10,8,2,0)+ 351(11, 10, 1,O) 

- 147312, 12,0,0) 
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F5 = 3(11,9,0,2)+108(11,8,2,1)-297(12,10,1,1)+189(13,12,0,1)+3(10,5,5,0) 

+ 273( 11,7,4,0)- 1862( 12,9, 3,0)+ 4164(13, 11,2,0)- 3798( 14, 13, 1,O) 

+ 1217315,15,0,0) 

F6 = 66(13, 10, 1,2)-84~14,12,0,2)+15(12,7,4,1)+820(13,9,3, 1)-3810(14, 11,2, 1) 

+ 5274(15, 13, 1 , l )  -2272(16, 15,0,1) + 30(12,6,6,0)+ 1329(13,8,5,0) 

-12918(14, 10,4,0)+41753(15, 12, 3,0)-61267%16, 14,2,0) 

+41928(17,16,1,0)- 10863g18, 18,0,0) 

F7 = 13(15, 12,0,3)+30(14,9,3,2)+846(15, 11,2,2)-2475(16, 13, 1,2) 

+1626(17, 15,0,2)+2(13,6,6,1)+213(14,8,5,1)+5424(15,10,4, 1) 

-39370(16, 12,3, 1)+89130(17, 14,2, 1)-82398(18, 16, 1, 1) 

+26921(19, 18,0,1)+237(14,7,7,0)+6321(15,9,6,0)-86502(16,11,5,0) 

+378465(17, 13,4,0)-789853(18, 15,3,0)+859836(19, 17,2,0) 

-470943(20, 19, 1,0)+ 102477%21,21,0,0) 

F, = 30(16, 11,2,3)+ 360(17, 13, 1,3)- 514(18, 15,0,3)+ 12(15,8, 5,2) 

+585(16, 10,4,2)+7830(17, 12, 3,2)-41880(18, 14,2,2) 

+60489(19, 16, 1,2)-26842&20, 18,0,2)+30(15,7,7, 1) 

+2107(16,9,6, i)+31620(17, i i , 5 ,  i)-354405(i8, i 3 , 4 , i )  

+ 1171774(19, 15, 3, 1)- 1739982(20, 17,2, 1)+ 1206828(21, 19, 1, 1) 

-318008(22,21,0,1)+ 12(15,6,9,0)+1653(16,8,8,0) 

+28485(17, 10,7,0)-561773(18, 12,6,0)+3200181(19, 14,5,0) 

-887603#20,16,4,0)+ 13599827(21,18,3,0)- 11751265fi22,20,2,0) 

+ 5365728(23,22, 1,O) - 1006844324,24,0,0) 

F9 = 15(18, 13, 1,4)+53(19, 15,0,4)+30(17, 10,4, 3)+810(18, 12, 3,3) 

+4980(19, 14,2,3)-18537(20, 16, 1,3)+13093821,18,0,3)+3(16,7,7,2) 

+237(17,9,6,2)+7194(18, ll,5,2)+55605(19, 13,4,2) 

+409342(23,21,0,2)+429(17,8,8,1)+ 17253(18, 10,7, 1) 

- 530887(20, 15, 3,2)+ 1277937(21, 17,2,2)- 1220562(22, 19, 1,2) 

+ 157754(19, 12,6, 1)-2887047(20, 14,5, 1)+ 13158120(21, 16,4, 1) 

-27871169(22, 18,3,1)+30690465(23,20,2, 1)- 17026500(24,22, 1, 1) 

+3761584(25,24,0, 1)+ 150(17,7, 10,0)+ 10721(18,9,9,0) 

+ 11 50801 i 9, 1 1,8,0) - 3542304(20, 13,7,0) + 25680324(2 1, 15,6,0) 

-90727953(22, 17,5,0)+ 182833239(23, 19,4,0)-220710559(24,21,3,0) 

+ 157992594(25,23,2,0)- 61856592(26,25, 1 ,0)+ 10205 103a27,27,0,0) 
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F,,  = 3(20,15,0,5)+40(19,12,3,4)+600(20,14,2,4)+1332(21,16,1,4) 

- 287M22, 18,0,4)+ 21( 18,9,6,3)+ 768( 19, 11,5,3)+ 12465(20, 13,431 

+41612(21, 15,3,3)- 364353(22, 17,2, 3)+ 583716(23, 19, 1, 3) 

-273128(24,21,0, 3)+54(18,8,8,2)+3453(19, 10,7,2) 

+68791(20, 12,6,2)+283014(21, 14, 5,2)-5562003(22,16,4,2) 

+20093143(23, 18, 3,2)- 31022689324,20,2,2)+22094430(25,22, 1,2) 

-5956953+(26,24,0,2)+30(18,7,10, 1)+4553(19,9,9, 1) 

+ 124833(20, 11,8, 1)+591822(21, 13,7,1)-21695784(22, 15,6, 1) 

+ 132241344(23, 17, 5, 1)-374687676(24, 19,4, 1)+581065166(25,21,3, 1) 

- 507614874(26,23,2, 1)+ 234600657(27,25, 1, 1)-44632309(28,27,0, 1) 

f2(18,6, 12,0)+ 1401(19,8, 11,0)+ 66247+(20, 10,10,0) 

-864268106(24,18,6,0)+2194249767$(25,20,5,0) 

+ 353219(21, 12,9,0)-21647458322, 14,8,0)+ 197540979(23, 16,7,0) 

- 3459394701(26,22,4,0)+ 3440320179(27,24, 3,O) 

-2101277061(28,26,2,0)+720068631(29,28, 1,O) 

- 106012306~30,30,0,0) 

F , ,  = 30(21, 14,2,5)+225(22, 16, 1,5)+99(23, 18,0,5)+63(20, 11,5,4) 

+ 1335(21, 13,4,4)+ 11885(22, 15, 3,4)+ 10515(23, 17,2,4) 

-113490(24, 19, 1,4)+94048(25,21,0,4)+6(19,8,8, 3)+477(20, 10,7,3) 

+ 12612(21, 12,6,3)+ 138858(22, 14,5,3)+ 139050(23, 16,4,3) 

-5126311(24, 18,3,3)+ 14279664(25,20,2,3)- 14538162(26,22, 1,3) 

+ 5080447(27,24,0,3) +936(20,9,9,2) + 39078(21, 11,8,2) 

+ 549948(22, 13,7,2) + 486944(23, 15,6,2) - 50422377(24, 17,5,2) 

+ 261034239(25,19,4,2) - 580425928(26,21,3,2)+657785232(27,23,2,2) 

-373158312(28,25, 1,2)+84122153(29,27,0,2)+ 1(19,6, 12, 1) 

+540(20,8, 11,1)+40755(21,10, 10, 1)+823013(22,12,9, 1) 

+465462(23, 14,8, 1)- 151588005(24, 16,7, 1)+ 1221415794(25, 18,6, 1) 

-4451485584(26,20,5, 1)+9103288647(27,22,4, 1) 

- 11 107281072(28,24,3, 1) + 8034192531(29,26,2, 1) 

-3181420965(30,28, 1, 1)+531545985(31,30,0, l)+63(20, 7, 13,O) 

+ 11434(21,9, 12,0)+391650(22, 11, ll,O)+66906(23, 13, 10,O) 

- 127557437(24,15,9,0)+ 1465184946(25, 17,8,0) 

-7788846597(26, 19,7,0)+24192018158(27,21,6,0) 
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-47718194586(28,23,5,0)+ 61656579231(29,25,4,0) 

- 52088959132(30,27,3,0)+27736974918(31,29,2,0) 

-8451120537(32,31,1,0)+ 1123450617&(33,33,0,0) 

High  field polynomials 

L ,  = z3  

L3 = 32' -9z7 + a29 
L4 = 726 - 33$28 + 5 12'' - 24+z'2 

L - 1' 4-2z6 
2 - 2z 

L5 = 1 8 ~ ~ - 1 2 1 ~ ~ + 2 8 8 ~ ~ ' - 2 9 1 ~ ' ~ +  106+~" 

L,j = 494~'-429~''+ 1 4 1 0 $ ~ ' ~ - 2 2 2 0 ~ ' ~ +  1 6 8 4 4 ~ ' ~ - 4 9 5 5 ~ ' ~  

L7 = 1 4 3 ~ ~ - 1 5 2 1 ~ "  +642Ozl3- 13872z15+ 1 6 2 8 1 ~ ' ~ - 9 8 8 8 ~ ' ~ + 2 4 3 7 $ ~ ~ '  

L8 = 4 2 9 ~ ' ~ - 5 4 1 4 ~ ~ ' ~ + 2 7 9 9 9 ~ ' ~ - 7 7 3 9 8 ~ ~ ' ~ +  1 2 4 1 6 5 ~ ' ~ -  1 1 6 0 7 7 3 ~ ~ ~  

+ 5 8 7 5 5 ~ ~ ~  - 1 2 4 5 7 4 ~ ~ ~  

L9 = 1326~" - 1938Ozl3+ 118864~"-401793~'~+822360~'~-  1047420~~ '  

+ 81 3 2 1 6 ~ ~ ~  - 352791~~ '  + 6 5 6 1 8 6 ~ ~ ~  

L 10 = I&' ' + 41842' - 6970@~' + 4954634~' - 19849762' * + 49598384~~' 

- 8 0 4 2 3 2 5 ~ ~ ~ + 8 4 8 5 8 6 2 4 ~ ~ ~ -  5 6 3 1 6 1 9 4 ~ ~ ~ + 2 1 3 7 3 1 5 4 ~ ~ ~  

- 354044&z3' 

L11 = 1 5 ~ '  ' + 1 3 3 7 1 ~ ' ~  - 25 14612' + 20374022' - 9458250~ '~  + 27985 1 3 0 ~ ~ '  

- 5 5 3 2 0 6 6 0 ~ ~ ~  + 74182779~~' - 6 6 7 7 6 0 5 3 ~ ~ ~  + 3 8 6 8 7 7 9 0 ~ ~ ~  

- 13048224~~'  + 1 9 4 8 1 6 1 h ~ ~ ~  

Liz = 97iz'' + 4 3 0 2 9 ~ ' ~  - 9 0 8 4 6 3 i ~ ' ~  + 82869084~'~ - 438331724~~' + 150201 5 8 5 ~ ~ ~  

- 3512743764~~~ + 5 7 3 5 6 9 2 1 7 ~ ~ ~  - 6 5 5 2 2 0 4 9 0 ~ ~ ~  + 514088399~~' 

-2642448834~~' + 8 0 1 8 8 9 7 7 ~ ~ ~  - 1 0 8 9 6 8 2 7 4 ~ ~ ~  

L13 = 525z13+ 138830~" - 3281880~ '~  +33392535z19 - 1 9 8 6 6 4 7 8 5 ~ ~ ' + 7 7 5 2 6 5 4 0 0 ~ ~ ~  

-2098448703~~'+4050218774~~~ -5627965959~~~  + 5597194944~~' 

-3891121690~~~+  1797133827~~~  -495661896~~~  +61800078 i$~~~  

L14 = 2'' + 2 5 3 6 4 ~ ' ~  + 4474814~ '~  - 118417762' + 1 33444O9ez2' - 8 8 3 9 2 9 6 6 9 ~ ~ ~  

+ 387721 1 9 0 2 ~ ~ ~  - 119449784023~~~ + 26666016898$~~~ 

-437653610294~~' + 5289645763%~~~ -4656529661 1234 

+ 29055837352~~~ - 12182650104~~~ + 3079314606~~' 

- 3 5 4 6 7 4 9 1 2 e ~ ~ ~  
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L, ,  = 12z13+ 11425zI5+ 1436253~'~-42636642~'~+529247008~' '  - 3 8 7 1 5 8 7 1 5 3 ~ ~ ~  

+ 18889738137~~ '~  -65375406444*~*~ + 166021444314~'~ 

- 314961411369~~' + 4 4 9 3 0 6 2 6 9 6 0 7 ~ ~ ~  -4802963438592~~' 

+ 379 17 14 161 32z3 - 2 145899726 1 5 ~ ~ ~  + 82377 1 7 9 8 2 0 ~ ~ '  

- 1921591 1 1 6 9 ~ ~ ~  + 2 0 5 6 5 2 6 5 4 3 $ ~ ~ ~  

L ,  6 = 9 3 ~ ' ~  + 4901 832' + 45751 392' - 1 5 3 0 6 2 1 5 8 ~ ~ ' ~  + 2084270379~'' 

- 16727473621*~~~+  90014451033~'~ - 3462945926714~~' 

+ 987391 1 5 8 9 6 3 ~ ~ '  - 21297441 5 1 758&z3' + 350977203053 1 z34 

- 44254 1 2 9 3 3 2 9 % ~ ~ ~  + 423940797359 1 z~~ - 3033241 322682:~~' 

+ 1570453365285~~~  -55591 160811 l*z44+ 1 2 0 3 8 9 3 0 3 7 3 0 ~ ~ ~  

- 1 2 0 3 2 0 3 3 4 6 8 i ~ ~ ~  

L17 = 5 9 8 ~ ' ~  + 2 0 2 7 6 4 ~ ' ~  + 1 4 4 0 9 8 9 4 ~ ' ~  - 547450096~~ '  f 8 1 5 3 6 0 4 7 9 5 ~ ~ ~  

- 7 1 4 0 5 1 0 1 5 3 6 ~ ~ ~  +420833846469~" - 1784180286798~'~ 

+ 5651844105765~~' - 13680739580495~~~ + 25620479515527~~~ 

- 37298644730412~~~ + 4212095908 1 8 9 3 ~ ~ ~  - 36547100200164~~~ 

+23906230325115~~~  - 11405426399510~~~ + 3745493261637~~~  

- 7 5 6 9 1 9 3 7 4 9 2 1 ~ ~ ~  + 70954769475h~~ '  

L = 1 3 ~ ' ~  + 343342' + 8 142692' + 446699413~~' - 1949392 143~"  + 3 1 6 9 2 7 6 3 2 0 8 ~ ~ ~  

- 3015249583123~~~  + 1934917700613~'~ - 89756336897173~~' 

+ 313149760376503~~~ - 841 7 2 8 7 2 3 0 3 4 2 9 ~ ~ ~  + 176820821627237f~~~ 

- 292389067189908~~~ + 381048704624616~~' - 3895457092474283~~~ 

+ 3088 34552509341 z~~ - 186042063589293~~~ + 8229307 18 3 7 4 9 6 ~ ~ ~  

-25202642440527~~' +4774062085647z5' -4213818626966~~~  

L, ,  = 21z15+ 1 8 1 8 9 ~ ' ~ + 3 1 8 8 0 9 1 ~ ' ~ +  1354719422" -6905938272~'~ 

+ 122423195703~'~ - 1260778496526~" + 8765897452023~'~ 

- 4422274371 8 5 0 2 ~ ~  + 168700384554780~~~ - 49918280441 3 7 0 9 ~ ~  

+ 1 16395 1275 1 9 7 3 6 0 ~ ~ ~  - 2158054973336719~~~ + 3193 1 1 172408 1 0 1 0 ~ ~ ~  

- 3765364402180404~~~ + 3515509230247087~~~ - 2565449575498857~~~ 

+ 1432096755422085~~~ - 590437841068988~~' + 169401214193559~~~ 

- 301972544451 3 6 ~ ~ ~  + 25 1 8 2 3 6 0 7 5 2 6 3 h ~ ~ ~  

L 2 0  = 1844~ '~+90651$2 '~  + 12201501~z2'+ 398442687~~'-24322143193~~'~ 

+ 4 7 0 0 1 4 1 6 1 3 9 7 3 ~ ~ ~  - 52241813396612~'~ + 391905907647714~~' 

- 21391541 1 0 6 7 8 0 9 $ ~ ~ ~  + 886804880651334~~~ - 2867679902319284~~~ 
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+ 7357764343318974~~~ - 15 136198582450644~~' 

+ 25 1014oO467745347~~~ - 33592891 6985 1 5 8 9 2 ~ ~ ~  

+ 361626701 73938031 z~~ - 3 1064085272018 1 2 5 2 ~ ~ ~  

+ 20997085086857609&~'~ - 109 19743335 1469582~ '~  

+4215633O39979898zs4 - 113762261 1924962$zS6 

+ 191500766930638$~'~ - 15134458156494&z60 

L2 ,  = 1 3 2 3 ~ ' ~ + 4 3 0 1 8 2 ~ ' ~ + 4 5 7 1 8 2 2 9 ~ ~ '  + 1 1 2 0 5 3 9 7 9 2 ~ ~ ~  -85095886233~~' 

+ 17936 194805823~~  - 2 146543 1 3 2 5 3 7 8 ~ ~ ~  + 173 127804877254~~ ' 
- 10 17935276525 1 0 2 ~ ~ ~  + 4561 8354 1410203 1$z3 ' 
- 16021945036844910~~~ +44905908255854368z3' 

- 10161 3354282959886~~' + 18690373 199744345 1~~~ 

- 2802455403 13 1 5 7 2 4 9 ~ ~ '  + 34225 174459458935 1 z~~ 

- 3388497269986044493~~~ +,269498 1958654596202' 

- 169636964749506429~~~ + 82572772040916168~~~ 

- 29970234585965632~~~ + 7634012726533563~'~ 

- 1217293609514970~~~ + 9 1 4 2 1 8 9 4 3 4 4 3 2 3 h ~ ~ ~  

L2, = 3 ~ ' ~ + 8 3 7 % z ' ~ +  1959481$z20+ 1 6 7 8 4 0 1 9 4 3 ~ ~ ~  + 2 9 3 5 2 7 3 0 2 8 ~ ~ ~  

- 2955 1 9 2 7 0 8 4 6 ) ~ ~ ~  + 6803493293622~~' - 875045418O2766$z3O 

+ 756493598609616~~~ -4773041 1 4 6 5 6 4 9 6 5 ~ ~ ~  + 23018561402772517~~~ 

- 87341709282688629~~~ + 265760126833423944~~~ 

- 65667269367508 1 4 9 5 $ ~ ~ ~  + 1328140280244409195&~~~ 

- 220803 1854541089061)~~~ + 30202066231 338421 5 2 $ ~ ~ ~  

- 339 1 1055260028 1 7 4 8 5 3 ~ ' ~  + 3 10740684838 1 889535$zS2 

- 23006521 3058433 12 1 4 j ~ ' ~  + 1354920776966205385+~'~ 

- 6198 183226541 712662" + 2122621738 1 5534O14$z6O 

- 51 195290584927827~~~ + 7754484620018985~~~ 

- 5 54807062 3 3448 8&z6 

L23 = 4 8 ~ ' ~ + 4 8 4 4 1 ~ ' ~ + 8 6 1 7 4 0 6 ~ ~ ' + 6 0 3 7 7 4 5 7 6 ~ ~ ~  + 6 7 4 7 3 1 7 9 9 7 ~ ~ ~  

- 101772327931 7~~~ + 2565 1 3 1 0 4 3 6 6 2 4 ~ ~ ~  - 354061536754941~~' 

+ 3272477752646354~~~ - 22083326312643045~~' 

+ 1 14155720998785930~~~ - 4658 13704970417072~~~  

+ 15305386829331 1 0 0 3 8 ~ ~ '  -4104128077094857968~~~ 

+ 9061 167056974367956~~' - 165591 12659094354042~~' 



1334 D D Betts, C J Elliott and M F Sykes 

+ 25105803765794858595~~~ - 31 562148720832543073~~ 

+ 32788899493478 101 5902’ - 27960461 54841 50233202’ 

+ 1936 19 121 37372503092~~’ - 1071 2589275796094284~~~ 

+4622167746869248128z6’ - 1498274806850039777~~~ 

+ 343 138747923 146652~~  - 49495440902354931 z~~ 

+ 3381 150761398343&~~~ 
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